1,145 research outputs found

    A model of impairment and functional limitation in rheumatoid arthritis

    Get PDF
    BACKGROUND: We have previously proposed a theoretical model for studying physical disability and other outcomes in rheumatoid arthritis (RA). The purpose of this paper is to test a model of impairment and functional limitation in (RA), using empirical data from a sample of RA patients. We based the model on the disablement process framework. METHODS: We posited two distinct types of impairment in RA: 1) Joint inflammation, measured by the tender, painful and swollen joint counts; and 2) Joint deformity, measured by the deformed joint count. We hypothesized direct paths from the two impairments to functional limitation, measured by the shirt-button speed, grip strength and walking velocity. We used structural equation modeling to test the hypothetical relationships, using empirical data from a sample of RA patients recruited from six rheumatology clinics. RESULTS: The RA sample was comprised of 779 RA patients. In the structural equation model, the joint inflammation impairment displayed a strong significant path toward the measured variables of joint pain, tenderness and swelling (standardized regression coefficients 0.758, 0.872 and 0.512, P ≤ 0.001 for each). The joint deformity impairment likewise displayed significant paths toward the measured upper limb, lower limb, and other deformed joint counts (standardized regression coefficients 0.849, 0.785, 0.308, P ≤ 0.001 for each). Both the joint inflammation and joint deformity impairments displayed strong direct paths toward functional limitation (standardized regression coefficients of -0.576 and -0.564, respectively, P ≤ 0.001 for each), and explained 65% of its variance. Model fit to data was fair to good, as evidenced by a comparative fit index of 0.975, and the root mean square error of approximation = 0.058. CONCLUSION: This evidence supports the occurrence of two distinct impairments in RA, joint inflammation and joint deformity, that together, contribute strongly to functional limitations in this disease. These findings may have implications for investigators aiming to measure outcome in RA

    Phase II TPDCV protocol for pediatric low-grade hypothalamic/chiasmatic gliomas: 15-year update

    Get PDF
    To report long-term results for children with low-grade hypothalamic/chiasmatic gliomas treated on a phase II chemotherapy protocol. Between 1984 and 1992, 33 children with hypothalamic/chiasmatic LGGs received TPDCV chemotherapy on a phase II prospective trial. Median age was 3.0 years (range 0.3–16.2). Twelve patients (36%) underwent STRs, 14 (42%) biopsy only, and seven (21%) no surgery. Twenty patients (61%) had pathologic JPAs, nine (27%) grade II gliomas, and four (12%) no surgical sampling. Median f/u for surviving patients was 15.2 years (range 5.3–20.7); 20 of the 23 surviving patients had 14 or more years of follow-up. Fifteen-year PFS and OS were 23.4 and 71.2%, respectively. Twenty-five patients progressed, of whom 13 are NED, two are AWD, and 10 have died. All children who died were diagnosed and first treated at age three or younger. Age at diagnosis was significantly associated with relapse and survival (P = 0.004 for PFS and P = 0.037 for OS). No PFS or OS benefit was seen with STR versus biopsy/no sampling (P = 0.58 for PFS, P = 0.59 for OS). For patients with JPAs and WHO grade II tumors, the 15-year PFS was 18.8 and 22.2% (P = 0.95) and 15-year OS was 73.7 and 55.6% (P = 0.17), respectively. Upfront TPDCV for children with hypothalamic/chiasmatic LGGs resulted in 15-year OS of 71.2% and 15-year PFS of 23.4%. No survival benefit is demonstrated for greater extent of resection. Age is a significant prognostic factor for progression and survival

    Closing in on Asymmetric Dark Matter I: Model independent limits for interactions with quarks

    Full text link
    It is argued that experimental constraints on theories of asymmetric dark matter (ADM) almost certainly require that the DM be part of a richer hidden sector of interacting states of comparable mass or lighter. A general requisite of models of ADM is that the vast majority of the symmetric component of the DM number density must be removed in order to explain the observed relationship ΩBΩDM\Omega_B\sim\Omega_{DM} via the DM asymmetry. Demanding the efficient annihilation of the symmetric component leads to a tension with experimental limits if the annihilation is directly to Standard Model (SM) degrees of freedom. A comprehensive effective operator analysis of the model independent constraints on ADM from direct detection experiments and LHC monojet searches is presented. Notably, the limits obtained essentially exclude models of ADM with mass 1GeVmDM\lesssim m_{DM} \lesssim 100GeV annihilating to SM quarks via heavy mediator states. This motivates the study of portal interactions between the dark and SM sectors mediated by light states. Resonances and threshold effects involving the new light states are shown to be important for determining the exclusion limits.Comment: 18+6 pages, 18 figures. v2: version accepted for publicatio

    Salvage high-dose chemotherapy for children with extragonadal germ-cell tumours

    Get PDF
    We reviewed the European Group for Blood and Marrow Transplantation (EBMT) experience with salvage high-dose chemotherapy (HDC) in paediatric patients with extragonadal germ-cell tumour (GCT). A total of 23 children with extragonadal GCT, median age 12 years (range 1–20), were treated with salvage HDC with haematopoietic progenitor cell support. The GCT primary location was intracranial site in nine cases, sacrococcyx in eight, retroperitoneum in four, and mediastinum in two. In all, 22 patients had a nongerminomatous GCT and one germinoma. Nine patients received HDC in first- and 14 in second- or third-relapse situation. No toxic deaths occurred. Overall, 16 of 23 patients (70%) achieved a complete remission. With a median follow-up of 66 months (range 31–173 months), 10 (43%) are continuously disease-free. Of six patients who had a disease recurrence after HDC, one achieved a disease-free status with surgical resection followed by chemotherapy and radiotherapy. In total, 11 patients (48%) are currently disease-free. Eight of 14 patients (57%) with extracranial primary and three of nine patients (33%) with intracranial primary GCT are currently disease-free. HDC induced impressive long-term remissions as salvage treatment in children with extragonadal extracranial GCTs. Salvage HDC should be investigated in prospective trials in these patients

    Dynamics of multi-stage infections on networks

    Get PDF
    This paper investigates the dynamics of infectious diseases with a nonexponentially distributed infectious period. This is achieved by considering a multistage infection model on networks. Using pairwise approximation with a standard closure, a number of important characteristics of disease dynamics are derived analytically, including the final size of an epidemic and a threshold for epidemic outbreaks, and it is shown how these quantities depend on disease characteristics, as well as the number of disease stages. Stochastic simulations of dynamics on networks are performed and compared to output of pairwise models for several realistic examples of infectious diseases to illustrate the role played by the number of stages in the disease dynamics. These results show that a higher number of disease stages results in faster epidemic outbreaks with a higher peak prevalence and a larger final size of the epidemic. The agreement between the pairwise and simulation models is excellent in the cases we consider

    The Influence of Transcription Factor Competition on the Relationship between Occupancy and Affinity

    Get PDF
    Transcription factors (TFs) are proteins that bind to specific sites on the DNA and regulate gene activity. Identifying where TF molecules bind and how much time they spend on their target sites is key to understanding transcriptional regulation. It is usually assumed that the free energy of binding of a TF to the DNA (the affinity of the site) is highly correlated to the amount of time the TF remains bound (the occupancy of the site). However, knowing the binding energy is not sufficient to infer actual binding site occupancy. This mismatch between the occupancy predicted by the affinity and the observed occupancy may be caused by various factors, such as TF abundance, competition between TFs or the arrangement of the sites on the DNA. We investigated the relationship between the affinity of a TF for a set of binding sites and their occupancy. In particular, we considered the case of the transcription factor lac repressor (lacI) in E.coli, and performed stochastic simulations of the TF dynamics on the DNA for various combinations of lacI abundance and competing TFs that contribute to macromolecular crowding. We also investigated the relationship of site occupancy and the information content of position weight matrices (PWMs) used to represent binding sites. Our results showed that for medium and high affinity sites, TF competition does not play a significant role for genomic occupancy except in cases when the abundance of the TF is significantly increased, or when the PWM displays relatively low information content. Nevertheless, for medium and low affinity sites, an increase in TF abundance (for both cognate and non-cognate molecules) leads to an increase in occupancy at several sites. © 2013 Zabet et al

    Nonlinear Time Series Analysis of Nodulation Factor Induced Calcium Oscillations: Evidence for Deterministic Chaos?

    Get PDF
    Legume plants form beneficial symbiotic interactions with nitrogen fixing bacteria (called rhizobia), with the rhizobia being accommodated in unique structures on the roots of the host plant. The legume/rhizobial symbiosis is responsible for a significant proportion of the global biologically available nitrogen. The initiation of this symbiosis is governed by a characteristic calcium oscillation within the plant root hair cells and this signal is activated by the rhizobia. Recent analyses on calcium time series data have suggested that stochastic effects have a large role to play in defining the nature of the oscillations. The use of multiple nonlinear time series techniques, however, suggests an alternative interpretation, namely deterministic chaos. We provide an extensive, nonlinear time series analysis on the nature of this calcium oscillation response. We build up evidence through a series of techniques that test for determinism, quantify linear and nonlinear components, and measure the local divergence of the system. Chaos is common in nature and it seems plausible that properties of chaotic dynamics might be exploited by biological systems to control processes within the cell. Systems possessing chaotic control mechanisms are more robust in the sense that the enhanced flexibility allows more rapid response to environmental changes with less energetic costs. The desired behaviour could be most efficiently targeted in this manner, supporting some intriguing speculations about nonlinear mechanisms in biological signaling

    Chromogranin A, a significant prognostic factor in small cell lung cancer

    Get PDF
    Chromogranin A (CgA) is a protein present in neuroendocrine vesicles. Small cell lung cancer (SCLC) is considered a neuroendocrine tumour. It is possible to demonstrate CgA expression in SCLC by immunohistochemical methods. Since CgA is released to the circulation it might also work as a clinical tumour marker. We used a newly developed two-site enzyme-linked immunosorbent assay for CgA in plasma from 150 newly diagnosed patients with SCLC. Follow-up was for a minimum of 5 years. Thirty-seven per cent of the patients had elevated pretreatment values and the values were significantly related to stage of disease. Multivariable analysis by Cox's proportional hazard model including nine known prognostic factors disclosed performance status as the most influential prognostic factor followed by stage of disease, CgA and LDH. A simple prognostic index (PI) could be established based on these four pretreatment features. In this way the patients could be separated into three groups with significant different prognosis. The median survival and 95% confidence intervals for the three groups were as follows: 424 days (311–537), 360 days (261–459) and 174 days (105–243). © 1999 Cancer Research Campaig
    corecore